

Electronics

Resistance and Resistor Color Codes

Lecture Contents

- Review of Current
- · Ohm's Law
- Resistor Color Codes
- Measuring Resistance

Electronics – Coulomb

- Charge: 1 Coulomb of charge per 6.24150975¹⁸ electrons
 - 1 electron has a charge of **1.60217646** x **10**⁻¹⁹ **Coulombs**
- **Current:** 1 Ampere = 1 Coulomb per second

- Depends on the chemical properties
- **Resistance** inverse of conductance
 - We will be using *resistance* in our calculations

$$resistance = \frac{1}{conductance}$$

Current and Voltage

 Current is the amount of charge (the number of electrons) flowing through the circuit per unit time

• *Voltage* is the strength with which those electrons are

pushed.

- We usually connect our circuitry to a power supply designed to output a specific *voltage*.
 - Wall socket, battery, USB, DC Supply, ...
- We find the current, I, through the circuit using Ohm's Law:

• We find the current through the circuit using Ohm's Law:

$$I = \frac{V}{R}$$

- Copper wires have low resistance
 - Many cases, we can assume zero resistance
 - If we assume the wires have zero resistance, what is the current flow through this circuit?

• We find the current through the circuit using Ohm's Law:

$$I = \frac{V}{R}$$

- Copper wires have low resistance
 - Many cases, we can assume zero resistance
 - If we assume the wires have zero resistance, what is the current flow through this circuit?

Calculate the current

Calculate the current

$$I = \frac{V}{R} = \frac{9 V}{1000 \Omega} = 0.009 A = 9 mA$$

What are these colored stripes?

Reading Resistor Color Codes Band A Band B Band C Band D Multiplier 2nd Digit 1st Digit Tolerance

Resistor Color Code

RESISTOR COLOR CODE

5-Band-Resist	tor		23	234*100kΩ = 23.4MΩ @				
Color	Band 1	Band 2	Band 3	Multiplic.	Tolerance			
Black	0	0	0	10^{0} (1 Ω)				
Brown	1	1	1	10^1 (10Ω)	± 1%			
Red	2	2	2	$10^2 \ (100\Omega)$	± 2%			
Orange	3	3	3	10^3 (1k Ω)				
Yellow	4	4	4	10^4 (10 k Ω)				
Green	5	5	5	$10^{5}(100 k\Omega)$	± 0.5%			
Blue	6	6	6	10^6 (1M Ω)	± 0.25%			
Purple	7	7	7	$10^{7} (10 M\Omega)$	± 0.1%			
Gray	8	8	8	$10^8(100 \mathrm{M}\Omega)$	± 0.05%			
White	9	9	9	10^9 (1G Ω)				
Gold				$10^{-1}(100 \text{m}\Omega)$	± 5%			
Silver				$10^{-2} (10 \text{m}\Omega)$	± 10%			
4-Band-Resist	tor							
		$3*10k\Omega = 230ks$	$10k\Omega = 230k\Omega @ 0.5\%$					

	EIA Standard Resistor Values by ± Tolerance%										Y N							
	3	Move the decimal point to achieve the actual value desired.													国管用的技术所谓出来的			
	E6	E12 ± 10%	E24 ± 5%	E48 ± 2%	E96 ± 1%	E6	E12 ± 10%	E24 ± 5%	E48 ± 2%	E96 ± 1%	E6	E12 ± 10%	E24 ± 5%	E48 ± 2%	E96			
ľ	20%	I 10%	15%	100	100	1 20%	I 10%	15%	215	215 221	1 20%	± 10%	15%	464	464 475			
			100		105			220		226			470		487			
		100		105	107		220		226	232	470		487	499	1			
	-	100		110	110 113				237	237			510	511	511 523	1		
			110	445	115			240	040	249				500	536		000/ 100 150	100 150
	100			115	118	220			249	255	470			536	549	1	20%	100, 150,
*				121	121				261	261 267				562	562 576	i e	10%	120, 180
			120	127	127		270	274	274		560	560	590	590		5%		
		120		121	130	270		214	280				390	604		20%		
				133	133 137			300	287	287 294			620	619	619 634		10%	
			130	140	140				301	301				649	649			
-					143					309 316					665 681			240, 300, 360, 430
			150	147	150		330	330	316	324		680	680	681	698			
		150	150	154	154				332	332				715	715		10%	560, 820
			160		158 162			360		340 348			_		732 750		5% 510, 620	510, 620, 750, 910
15				162	165				348	357			750	750	768			
				169	169 174				365	365 374				787	787 806	3		
	150	180 -		178	178	330			383	383	680			825	825			
			180		182			390		392			820		845			
			231-0-	187	187 191				402	402				866	866 887			展展的
				196	196		390		422	422		820		909	909			
			200		200			430		432 442			910		931 953			
					210				442	453				953	976	S S		

Reading Resistor Color Codes

Reading Resistor Color Codes

Resistor Color Code

Next:

How to measure resistance

Electronics

Resistance and Resistor Color Codes

